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Fig. 4. Projections UV 1/2 of the difference Patterson synthesis of the Hg(SCH2CH2NH3CI) 2 derivative of ?-crystallin IIIb. Overall scale 

and temperature coefficients are calculated (a) using the relation .', (F~2/Z(Fgu) 2 and (b) using formula (13) of this paper. 

be added that the use of this principle changes 
significantly only the scale factors of the strong 
derivatives. For the weak derivatives these changes are 
small. Finally, it may be noted that the use of the direct 
method of calculation of scale factors does not require 
essential changes in the computer program. 

I am indebted to Dr Yu. N. Chirgadze for constant 
interest and help throughout this work. 
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The theory for the contrast of stacking faults and 
dislocations in electrons which have been scattered 
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inelastically is derived. Small-angle plasmon and 
single-electron scattering show similar contrast to the 
elastically scattered electrons. Phonon scattering by 
large angles away from strongly excited Bragg re- 
flections shows reversed contrast and small-angle 
phonon scattering gives better contrast for defects near 
the top of the specimen. 
© 1983 International Union of Crystallography 
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Introduction 

In the electron microscopy of crystals greater than 
about 1000 A thick, many of the electrons have been 
inelastically scattered by plasmons, single electrons and 
phonons. 

The loss of electrons from the elastically scattered 
Bragg beams (due to inelastic scattering) has been 
considered as an absorption which can be represented 
by a non-Hermitian addition to the crystal potential 
(Yoshioka, 1957). There has not been much work on 
the positive contribution, if any, of inelasticaUy scat- 
tered electrons to any image. Howie (1963) argued 
qualitatively that images observed in plasmon-scat- 
tered electrons should be similar to images in elasti- 
cally scattered electrons. Humphreys & Whelan (1969) 
and Cundy, Howie & Valdre (1969) argued that the 
same effects should be true for small-angle single- 
electron scattering. 

There have been some observations that showed 
contrast preservation for plasmon scattering in perfect 
crystals (Castaing, E1 Hili & Henry, 1966) and 
stacking-fault contrast in single-electron excitations has 
been observed by Craven, Gibson, Howie & Spalding 
(1978). Stacking-fault contrast in plasmon-scattered 
electrons was investigated by El Hili (1967). 

The contrast for large-angle scattering by phonons, 
as first observed by Kamiya & Uyeda (1961), could not 
be predicted by using simple arguments, and ex- 
perimentally was shown to be quite weak for stacking 
faults (Kamiya & Nakai, 1971). Nonoyama, Nakai & 
Kamiya (1973) also showed a top/bottom effect in the 
images of stacking faults. Kamiya & Nakal (1976) and 
Gai & Howie (1975) also investigated the phonon 
contribution to dislocation images. 

Calculations of contrast of dislocations in phonon- 
scattered electrons (Melander & Sandstrom, 1975a) 
and stacking faults in phonon-scattered and plasmon- 
scattered electrons (Melander & Sandstrom, 1975b; 
Melander, 1975) have been performed by summing 
over the 'resonance errors' mentioned by Howie 
(1963). 

In this paper, the theory of Young & Rez (1975) and 
Rez, Humphreys & Whelan (1977) will be applied to 
imperfect crystals. This leads to a more compact 
expression of the theory than that given by Melander & 
Sandstrom and the expression for stacking-fault con- 
trast can be given in closed form. Furthermore, the 
theory can be more easily used to give qualitative 
indications of the contrast to be expected from inelastic 
excitations. 

Theory 

Both the incident and inelastically scattered states can 
be expressed either as sums of plane waves 

~p,(r) = ~ %(z) exp [i(k + g).r] (1) 
g 

or sums of Bloch waves of energy E n 

~0,(r) -- Y ~,J(z) Y C~ exp [i(ld + g).r] (2) 
J g 

the z direction being normal to the foil surface. The 
wave functions are solutions of Yoshioka's (1957) 
equation: 

-h2 1 [~m V2 + Onm-En = - Z  Onto(Pro, (3 )  
m:xn 

where the matrix elements H.m(r) are given by 

H,m (r) = f a* (rp.. . ,  rM)H (r,r, . . . . .  r M) 

x aM(r1, ..., rM)dr 1 . . . .  , dry, (4) 

where a~ is the wave function of the crystal in its nth 
excited state and H describes the interaction between 
the fast electron and the crystal. Howie (1963) and 
Humphreys & Whelan (1969) showed that 

Hnm(r ) = exp (--iqn m r) ~ H~gm(r) exp (ig. r), (5) 
g 

where qnm is the wave vector of the excitation created in 
the transition m -* h. The form of Hnm(r ) for various 
excitations is discussed in the next section. For single 
inelastic scattering the amplitudes of the inelastically 
scattered Bloch waves (denoted throughout this paper 
by primed indices) and incident electron Bloch-wave 
amplitudes are related by the differential equation: 

dl/fl'(z) 
- -  - ~ S e J exp (ifld 'j z) ~tJ(z) (6) 

dz j 

6k i " t=- (  k e -  kJ + q)z, (7) 

where ~ '  is the wave vector of the ith scattered Bloch 
wave, k j is the wave vector of the j th incident Bloch 
wave and q is the excitation wave vector defined to lie 
in the first Brillouin zone. The change in the z 
component of the fast electron wave vector need not 
equal the z component of the crystal excitation wave 
vector given by periodic boundary conditions. S i'j is a 
matrix element for transitions between branch j of the 
incident-state dispersion surface and branch i' of the 
scattered-state dispersion surface and is given by 

- im  
S i ' J -  h 2 k~' Z C[' Ht_ h CJh, (8) 

lh 
where /d~' is the z component of k and C~' and C]~ are 
Bloch-wave coefficients (real for centrosymmetric 
crystals). 

It is helpful for the development of the theory to 
rewrite (6) in matrix form: 

dv'(z) 
- -  - S (z) exp (-iq~ z) ~(0), (9a) 

dz 



PETER REZ 699 

where 
S(z) = S vj exp [i(k J - k v) z]. (9b) 

In a crystal with a stacking fault, the inelastic 
scattering can take place either before or after the 
stacking fault. A fault at depth t introduces a phase 
shift of g. R (R the fault displacement vector) on the 
plane waves in (1). The change in the Bloch-wave 
amplitudes can be represented by the matrix operator 

¥(t + 6) = A(t) q(t - 6), (10a) 

where 6 is a small change in depth, 

A(t) = X Cg C~ exp (ig. R) exp [ f l U -  k i) t]. (10b) 
g 

The amplitude from inelastic scattering after the stack- 
ing fault is represented by 

T 

f S ( z ) e x p ( - i q z z ) A ( t ) ~ ( O ) d z ,  (11) 
t 

and the amplitude from inelastic scattering before the 
fault is represented by 

t 

A(t) f S(z) exp (--iqz z) ¥(0) Oz. (12) 
0 

The intensity after scattering by a given inelastic 
excitation is 

C'(T) f S(z) Iqg- 4:~2 t 

x exp ( - i q z z ) A ( t )  ~/(0) dz + C'(T) A(T) 

/ I x S(z) exp ( - iq~ z) W(0) dz (13) 
0 

T being the specimen thickness and (V/4rF) da being 
the density of inelastic excitation states (V is the crystal 
volume). It is necessary to sum over all z components 
of the excitation wave vector for a given wave-vector 
component in the plane parallel to the specimen surface. 
The z components of the wave vector are given by 
periodic boundary conditions 

qz = 2rm/t.  

If the matrix elements vary slowly with q~ (which is 
nearly always the case as qx is much greater than q~) 
the sum can be performed analytically (Young & Rez, 
1975; Rez et al., 1977) to give the relation that each 
slice scatters independently 

Y exp i - -  (z - z') = N~ 6(z - z'), (14) 
-2 t 

where z, z' refer to lattice sites and N, is the number of 
lattice sites in the z direction. 

It must be remembered that the crystal modes are 
only truly independent in a perfect crystal and (13) 
should contain terms corresponding to correlation 
between different modes.* This represents the scattering 
of the crystal excitation by the defect which is in itself 
a problem of great complexity. Furthermore, it is 
probably a second-order effect and, for the purposes 
of fast-electron scattering, it will be assumed that the 
modes for the imperfect crystal are the same as those of 
the perfect crystal and that these correlation efforts will 
be neglected. When the effects of the crystal structure 
in the z direction are also neglected (for elastic scatter- 
ing this is the assumption of no upper-layer lines), the 
sum over lattice sites can be written as an integral. 
Performing the integration gives 

V 
- - d o  Y Y Y Y Cf Cf 

I ~ =  4n 2 k'r U iV' *h' 

c,t' r,l' s r J  S j' t X ,.,h,~.,h CJh: Clo Cg 

x exp [i(k ~e - k r) ( T -  t)] exp [i(h - h ' )  R] 

{exp [i(k j -  kO t] - e x p  [i(k v -  k j') t]} 
× 

i (k  j - k r _ k i + k j') 

+ E Z Z Z  c ' ;c f  
l'J' U kl hh' 

× si'J sJ"C  c'. C'h, C'o C*o 
x exp [i(k l -  kg)t] exp [i(h - h ' )R]  

x {exp [i(k j -  k t ) (T  - t)] 

- exp [i(k i' - kJ ' ) (T - t)l} 

x [i(k j -  k i ' -  k t + kJ')]-L (15) 

The theory for inelastic scattering in a crystal with 
dislocations proceeds in a similar way. The amplitudes 
in the presence of a strain field denoted by u(r) are 
given by the solution of the coupled differential 
equation 

_ _  d u ( r )  
d~(z)  _ Y C~ C~ g----~z exp [i(k j -  k t) z] ~J(z).  (16) 

dz g 

The plane-wave amplitudes are solutions of the 
Howie-Whelan equations: 

d0g(r) in [ du(r)] 
dz --h~-~g_h (0h(r)+i 27rsg+g--~-ZZ ](og(r)' 

(17) 

where sg is the excitation error and ~g is the extinction 
distance. The solutions of the differential equation at 
one depth can be expressed as a matrix operation on 
the solution at another depth (see Appendix A) 

q(t~) = A(t x - t 2) ~(t2). (18) 

* I am indebted to Dr A. P. Young for pointing this out. 
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In a crystal where single inelastic scattering and 
dislocation scattering takes place, it is possible to have 
scattering from the dislocation both before and after the 
inelastic scattering. The amplitude at the exit surface of 
the crystal can be written as 

T 

v'(T)  = f A ' (T--  z)S(z)exp ( - iq~z)A(z)~l (O)dz  (19) 
0 

(see Appendix B). The intensity in a beam at the exit 
surface is then 

T 

Ig q = ~.. IC ' (T )  f A ' ( T -  z) S(z) 
qz 0 

x exp ( - - iq~z)A(z)  ~'(0)dzl 2. (20) 

The sum over normal modes can again be performed to 
give the relation that each slice scatters independently, 
which means that the intensity is given by 

V 
I~ = 4re---- f do ~. ~. C~' CJg ' exp [i(k" - k j') T]  

T 
x f A i'p' ( T -  z )A*J '¢ (T  - z) S ~'q S q'p 

o 

x exp [i(Ak p'q - Ald 'O z] Aei(z) 

x A*pi(z) Cio C { d z ,  (21) 

where Ak  p'q' = Id - k p'. The operations A(z) are derived 
from a numerical solution of the Bloch-wave-coupled 
differential equations. Bloch waves happen to be a 
convenient representation for solving the Schr6dinger 
equation, but it is equally possible to work with the 
plane-wave solutions of the Howie-Whelan equations. 
The wave vector at depth t2 is related to the wave 
vector at depth tt by the matrix operator 

~(t2) = P(t 2 -- t,) ta(t,). (22a) 

For a perfect crystal, the operator P(t 2 - tl) can be 
expressed in terms of the Bloch-wave coefficients: 

Pgh(t2-  t , ) =  Y CJg C~ exp [ ikJ ( t2 -  t,)]. (22b) 
J 

The beam amplitude at position g - q in reciprocal 
space is given by 

T 

m fp,  h(T_Z)Hh_texp(_iqzZ)Plo(Z)dz (23) 
h 2 k 

o 

and the intensity after summing over normal modes is 

v do f Pih ( r -  z) 
o 

× Pg~, ( T - -  z) H h _ I Hh,_I , .Plo(Z)P~o(z)dz.  (24) 

This approach was used by Gjonnes (1966) and can be 
easily related to the method given by Doyle (1969) who 

calculated the elastic scattering matrices by multislice 
methods. 

It is possible to derive approximate solutions by 
assuming the dislocation is either in the top half or 
bottom half of the crystal. The appropriate term of the 
solution for the stacking-fault contrast is then ap- 
plicable provided the stacking-fault operator is re- 
placed by an appropriate operator for electron-beam 
propagation in a crystal with a dislocation. 

The matrix elements for inelastic scattering 

In the calculations, single inelastic scattering by 
phonons, plasmons and single-electron excitations has 
been considered. 

The interaction between fast electrons and phonons 
has been described by a rigid ion model and the 
intensities arising from creating a phonon of wave 
vector q or destroying a phonon of wave vector - q  
have been summed. The matrix elements are the same 
as those used in Rez et al. (1977). For creation of a 
phonon of polarization p, wave vector q, the matrix 
element is 

- i  
H~ m -  ( M N )  v2 ( g -  q).%,p V ( g -  q) 

x (N,~p) m (25a) 

and the matrix element for destruction of a phonon of 
wave vector - q  is 

- i  
H'~ 'n (MN)' /2  (g -- q). eq, p 

(hi'/~ × V ( g - q )  ~ (Nq, p + I )  '/2, (25b) 
2Wq, p] 

where Wq,p is the phonon frequency, N is the number of 
atoms in the crystal, M is the atomic mass, V(g - q) a 
Fourier coefficient of the crystal potential and Nq,p, the 
occupation number of state q, p, is given by 

Nq, p :  1/[exp (hwq,p /k  B T ) -  1], (26) 

where k B is Boltzmann's constant and T the tem- 
perature. The phonon dispersion relation derived by 
Born (1942) for nearest-neighbor interactions in f.c.c. 
materials was used: 

w2 3v2 
-- ~ (1 --~{cos [(qx + qy)a] + cos [(qy + q~)a] 

+ cos [(q~ + qx) a] - cos [(qx -- qy) a] 

- cos [ ( q y -  qz) a] - cos [ ( q , -  qx) a]}), (27) 

where v s is the appropriate sound velocity. 
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The plasmon matrix elements are those derived for a 
free electron gas as given by Ferrell (1956) for 
scattering between plane-wave fast-electron states and 
later used by Howie (1963) and Melander (1975). For 
plasmon scattering the Fourier coefficients of the 
interaction potential are 

e 2 AE 
Ho 2 - - -  ( 2 8 )  

2e ° q2 V 

Hg = 0 in m.k.s, units, where q is the plasmon wave 
vector made up from the angular deflection qx and the 
wave-vector difference due to the energy loss AE which 
is kAE/2E.  

q2= q2 + k 2 (AE/2E)2. (29) 

For single-electron scattering the product of the matrix 
elements S vp S J'q can be written as 

Si'p s j ' q  r-,v r-,j, H = "-'g ,.,g, g-h(q) n : - h ' ( q )  C# C~, (30) 

The products of the Fourier coefficients of the 
interaction potential have been derived by Kainuma 
(1955) using the completeness relation between final 
states, and the single-electron scattering is given by 

1 {e2~ 2 S ( g - h - q , q ,  + h ' - g ' )  

V c V C;' C~'~o]'--' I g -  h - ql2lq + h ' -  g'l 2 
C~:, 

(31) 
where 

S ( g - h - q , q  + h ' - g ' )  

= ~ e x p [ i ( g ' - - g - - h ' k  + h) rk ] [ ~. f~n(g' - g - h' + h) 

- ~  f ,  km(g h q) k , g, ] -- -- f nm(h - + q) . (32) 
n m  I 

ffm(Q) is a matrix element and n, m refer to states of 
the kth atom in the unit cell. 

This expression of course neglects the energy losses 
as it would then not be possible to use closure of final 
states, a severe disadvantage as these are difficult to 
calculate. This is important for small-angle scattering 
as has been pointed out by Pogany (1971). The matrix 
elements were calculated from values tabulated by 
Freeman (1959a,b) and the value needed for any 
particular argument was evaluated using a cubic spline 
interpolation. This procedure is probably appropriate 
for integrated low-loss scattering up to about 100 eV 
and gives a weighted average for the localization of 
scattering from the different subsheUs. As this is 
dominated by valence and conduction electrons, the 
results are not expected to be much different from those 
for plasmon excitations. If the contrast in a defect in a 
particular subshell is of interest, then the matrix 
element 

1 (e212 f ( g - h - q ) f * ( g ' - h ' - q )  

VcV\ -~o  ] i g _ h _ - ~ ~ - ~ , - q l  ~ (33) 

should be calculated from the appropriate oscillator 
strength as discussed by Leapman, Rez & Mayers 
(1980). This might show stronger localization effects 
particularly for deeply bound K shells. 

Results 

The contrast of a stacking fault (g. R = -1 /3 ,  g = 111) 
in copper and a screw dislocation (g. b -- 1, g = 111) in 
aluminium is investigated for various apertures in a 1 l i  
diffraction pattern when the crystal is set at the 111 
diffraction position (Fig. 1). Aperture positions along 
the 111 systematic line and perpendicular to that line 
were considered. Only the results for point-aperture 
calculations are presented here as averaging over an 
aperture of given size did not usually have much effect. 
The intensities are therefore given as the differential 
cross section dI/dO,  and to obtain the intensity that 
would be observed with a given aperture the differ- 
ential cross section should be multiplied by the aperture 
solid angle. 

The results of plasmon scattering on the contrast of 
a stacking fault in a copper foil 4~111 thick are shown in 
Fig. 2. For apertures at the Bragg spots, the contrast is 
the same as in the elastically scattered electrons. As the 

~2B 
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OZZ : 1 1 1 ' 
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! , 
. . . . . . . . . .  t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

LOWER HALF 

KIKUCHI BAND 

XBL 8211-3393 

Fig. 1. 112 diffraction pattern showing position of apertures used 
for the calculations. 
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dlldO dlldO dl/dO dl/dO dl/dO 

0 t/~.,, 4 0 t /~, ,  4 0 t /~, ,  4 0 t /~, ,  4 0 t /~. ,  4 

000 
0.4g -0.2g 0.2g 0.4g 

111 

dI/dfl 
120 

0 t /~ , .  4 0 

dl/dO dl/dO dl/dO dl/dO 

~/~,. t+ 0 t/~,,, t+ 0 t/~.,, 4 0 t/~,,, t+ 

XBL 829-11759 

Fig. 2. Contrast in plasmon-scattered electrons for a stacking fault (g. R = - 1 / 3 ,  g = 111) in a 4~11t thick copper foil for various aperture 
positions along a 111 systematic line. 

scattering wave vector increases, the terms from con- 
trast in both elastically and inelastically scattered 
electrons contribute to the contrast and these give rise 
to fringes of different periodicities. According to the 
theory, the contrast is also reduced as the Brillouin zone 
boundary is approached. 

Any differences between single-electron contrast and 
plasmon contrast are due to differences in the Fourier 
coefficients of the interaction Hamiltonian. For single- 
electron excitations H J H  o should be larger than for 
plasmons but the effect of this change is only noticed 
for the aperture position (0.4g) close to the Brillouin 
zone boundary (Fig. 3). The effect should be more 
pronounced if localized excitations such as K shells 
were explicitly considered. There is also a change in 
contrast between plasmon and single-electron images 
for dislocations. 

For phonon scattering, the first Fourier coefficient of 
the interaction potential Hg is either about equal to or 
greater than the mean coefficient H 0. This means that 
scattering is usually interbranch rather than intra- 
branch and it would not be expected that contrast 
would be preserved. For apertures on the Bragg spots 
there is no contrast, but as the aperture is displaced, 
either along the systematic line or perpendicular to it, 
the contrast increases (Figs. 4, 5). All inelastic images, 
whether phonon, plasmon or single electron, show the 
usual feature of elastic images in which fringes near the 
top are pseudo-complementary and fringes near the 
bottom are reversed for apertures placed near the 
incident beam and corresponding apertures placed near 
the diffracted beam. 

Unlike the images in electrons scattered by plasmons 
or single-electron excitations, the stacking-fault images 
for phonon scattering perpendicular to the systematic 
line show reversed contrast to the elastic image. This 

dIldO 
110 

d I /dO 
2900 

0 t/Z,, 4 0 tl~,, 4 

dIldO 
dlldO 

2600 

-0:3 01V/ ' -013 0.5 " 

(a) (b) 
Fig. 3. Comparison of contrast for (a) plasmon excitation and (b) 

single-electron excitation for a stacking fault (g . r  = - 1 / 3 ,  g - -  
111) in copper (top row) and a dislocation (g.b = 1, g = 111) 
in aluminium (bottom row). 
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t / ~  4 

dl/dO 
9.1 

dI/d0 

0 t/E,,, t, 

- 0'4g 

dl/dO 

0 t/E,,, 4 

dl/dO 

0 ,IE~, t~ 

• - 0 . 2 g  

dl/dfl 

0 t /~,.  4 

0 t / ~  4 

dl/dO 
17000 

t / ~  4 

dl/dfl 

0 t / ~  4 

dIldfl 

0 t / ~  4 

0 0 0  

111 
0 ' 2 g  0"4g 

dl/dfl 
lzO00 

t / ~  4 

dllcK'l 

0 t / ~  4 

dI/dt) 

0 t / ~  4 

dl/d0 
9.2 

0 t/E,,, 4 

dl/dfl 

0 t / ~  4 

Fig. 4. Cont ras t  of  stacking fault (g. R = --1/3,  g = 111) for phonon-scat tered electrons in a copper foil 4~ll I thick for various aperture 
positions in a 112 diffraction pattern.  

can be explained by considering the matrix elements for 
large-angle scattering where Hg _~ H o causing the 
matrix element $1~ to dominate. This acts in op- 
position to anomalous absorption, so would increase 
those peaks which anomalous absorption decreased. 
Fig. 6 shows the result of a calculation with negative 
anomalous absorption of a stacking fault in elastically 

scattered electrons and this shows a similar reversal. 
A brief discussion of this effect is given by Kamiya & 
Nakai (1971). 

Certain top-bottom effects are very apparent from 
the calculations. For apertures along the systematic 
line, the contrast is much stronger for a defect at the 
top of a foil and this has been observed, though for 
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Fig. 5. Contrast of a screw dislocation (g. b = 1, g = 111) in an aluminum foil 4~1 . thick in phonon-scattered electrons for various aperture 
positions along a 111 systematic line. The profiles are given for a dislocation at a depth of ~m in the upper half and 3 ~  in the lower 
half of the figure. 

different aperture positions, by Kamiya  & Nakai  
(1971). Furthermore, the contrast reverses from inside 
to outside the Kikuchi band and from an aperture near 
000 (bright field) to a corresponding aperture near 111 
(dark field). 

For stacking faults, these effects can be understood 
from (15). The dominant contrast giving terms are 
those where (a) i' = 1 , j  = 2, k' or k = 1 ; j '  = 1, i = 2, l 
or l' = 2, and (b) i' = 2 , j  = 1, k' or k = 1; a n d j '  = 2, 
i = 1, l or l '  = 2. As can be seen, both involve 
interbranch transitions and both give rise to fringes of 
periodicity ~g. The contributions from these two terms 
cancel when the fault is near the bottom of the foil and 
so there is only contrast from faults closer to the top 
surface. Using the parameter fl (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965) to specify the 

inelastically scattered state the products of Bloch-wave 
coefficients are, for the first term of (15), ½ cos (fl/2) 
x sin (p/2) for (a) and --{ cos (p/2) sin (///2) for (b), so 
the two contributions cancel when inelastic scattering 
precedes stacking-fault scattering, which is dominant if 
the fault is at the bottom of the foil. For the second 
term of (15), the products of the Bloch-wave coefficients 
are ½ cos 2 (fl/2) and -½ sin 2 (fl/2) for contributions 
(a) and (b) respectively. This means that for scattering 
by the stacking fault before inelastic scattering when 
the fault is at the top of the crystal there is contrast 
except for very small scattering angles when fl is almost 
zc/2. As the relative magnitudes of contributions (a) and 
(b) change as fl goes through ~r/2, this also explains the 
reversal when going from one side of the Bragg spot to 
the other. 



O. 39 

0 t/~,, ~. 

dI/dO 
21x106 

(a) 

PETER REZ 

0.48 

t/~,,  4 

dI/dO 
26,106 

0 t/E,,, 4 0 t/E,,, 4 
(b) 

705 

the contrast gets stronger as the aperture is moved 
away from the Bragg spots, both along the systematic 
line and perpendicular to it. Defects at the top of a 
crystal show stronger contrast than defects at the 
bottom of a crystal. 

For stacking faults, the contrast is reversed com- 
pared to the elastically scattered image when the 
aperture is displaced perpendicular to the systematic 
line in agreement with the experiments of Kamiya & 
Nakai (1971). This is because phonon scattering tends 
to act in the opposite sense to anomalous absorption. 
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Fig. 6. Comparison of contrast of stacking fault in a copper foil 
4~,, 1 thick in (a) elastically scattered electrons, (b) electrons 
scattered to a position 2i0 by phonons, (c) elastically scattered 
electrons with negative anomalous absorption parameter. 

Conclusions 

As predicted by Howie (1963), Cundy et al. (1969) and 
Humphreys & Whelan (1969), the contrast of defects is 
similar to the contrast in elastically scattered electrons 
when the scattering is small-angle plasmon or single- 
electron scattering. For larger scattering angles, the 
contrast for plasmon and single-electron excitation can 
be partly understood by considering the dispersion 
surfaces for the incident and scattered states. Differ- 
ences between the single-electron excitation contrast 
and plasmon contrast are only important for large 
scattering angles to positions near the Brillouin zone 
boundary. 

For phonon scattering, there is no contrast for 
apertures centered on strongly excited Bragg spots, but 

A P P E N D I X  A 

Equation (11) can be written as 

d~(z) 
dz = B(z) V(z), 

d 
- -  G ( z )  V(z) = 0,  
dz 

where G is a matrix 

(Xl) 

d~(z) dG(z) 
C ( z )  - - _  - -  v ( z )  

dz dz 

d¥(z) dG(z) 
d------~ - -G-'(z) ~ ¥(z) (A2) 

dG(z) 
B(z) -- --G-l(z) ~ (A3) 

dz 

Integrating (A 1) gives 

G(t,) ¥(tl) = G(t2) ~(t2) + constant. (A4) 

The constant must be zero otherwise the solution would 
be inconsistent at t, - t2, so 

W(tl) -- G-'(tl) G(t2) q(t2), (A5) 

and comparing this with (12) gives 

A(t, - t2) = G-'( t ,)  G(t2). (A6) 

Taking the inverse of both sides, 

A- '( t ,  - t2) -- G-'(t2) G(tl) = A(t 2 _ t,), (A7) 

which means that the matrix relating the solution at 
depth t, to that at depth t 2 is the inverse of the matrix 
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relating the solution at t 2 to that at t 1. These properties 
of the equations are the basis of the generalized cross 
section of Head, Humble, Clarebrough, Moreton & 
Forwood (1973) which considerably speeds up the 
calculation of dislocation images. 

APPENDIX B 

The equations relating the amplitudes are 

d¥'(z) 

dz 
- B'(z) V'(z) + S(z) exp (-iq~z)¥(z) (B1) 

d¥(z) 
- -  - [3(z) W(z), (B2) 

dz 

where the elements of 13 (z) are 

y t j g.du(r) 
Cg Cg ~ exp [i(k I - k ~) z] 

g dz 

and scattered states are denoted by primed quantities: 

dtG'(z) ¥'(z)] 
= G'(z) S(z)exp (-iq, z)~g(z) (B3) 

dz 
T 

[G'(z) ¥'(Z)]or = f G'(z) S(z) exp(--iqzz) V(z) dz (B4) 
0 

v'(T) = G'- '(T) G'(0) ¥'(0) + G ' - I ( T )  
T 

x f 6'(z)S(z) exp (-iq, z) V(z)dz. (B5) 
o 

As no inelastic scattering takes place before the fast 
electron enters the crystal ~' (0) = 0 and, using (A 6), 

T 

v'(T) = f A'(T-- z) S(z) exp (--iq, z) V(z) dz,(B6) 
o 

which is the same as (13). 
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Abstraet 

The influence of hydrogen/deuterium exchange on the 
intensity scattered by solutions of globular particles in 
neutron small-angle scattering experiments in 2H20/ 

0108-7673/83/050706-06501.50 

] H 2 0  buffers has been calculated. By separating the 
contribution of the change of the average scattering 
density of the solute from that of the inhomogeneities of 
the distribution of exchangeable hydrogens, equations 
similar to the classical equations of Stuhrman & Kirste 
© 1983 International Union of Crystallography 


